MST for Suicidality

Out on PubMed, from researchers at the University of Toronto is this paper:Magnetic Seizure Therapy for Suicidality in Treatment-Resistant Depression.

Weissman CR, Blumberger DM, Dimitrova J, Throop A, Voineskos D, Downar J, Mulsant BH, Rajji TK, Fitzgerald PB, Daskalakis ZJ.JAMA Netw Open. 2020 Aug 3;3(8):e207434. doi: 10.1001/jamanetworkopen.2020.7434.PMID: 32809030
The abstract is copied below:

Importance: There is an unmet need for effective treatments for suicidality in mental disorders. Magnetic seizure therapy (MST) has been investigated as an alternative to electroconvulsive therapy, a known effective treatment for suicidality, in the management of treatment-resistant major depressive disorder, with promising findings. Yet, there are very limited data on the association of MST with suicidality directly. It is important to explore the potential of MST as a viable treatment alternative to electroconvulsive therapy for suicidality.

Objective: To determine the association of MST with suicidality in patients with treatment-resistant major depressive disorder.

Design, setting, and participants: This nonrandomized controlled trial took place at a single tertiary care psychiatric facility in Canada. It followed an open-label study design with consecutive treatment cohorts. Consecutive groupings of 67 patients with treatment-resistant major depressive disorder and with baseline suicidality present were treated for up to 24 treatments. The study was run from February 2012 through June 2019. Patients were followed up for 6 months at the end of the treatment period. This post hoc secondary analysis of the trial was performed from January to November 2019.

Interventions: MST was delivered at 100% stimulator output over the prefrontal cortex with low (25 Hz), moderate (50 or 60 Hz), or high (100 Hz) frequency, for a maximum of 24 sessions.

Main outcomes and measures: Remission from suicidality was measured as an end point score of 0 on the Beck Scale for Suicidal Ideation. A linear mixed model was used to assess the trajectory of Beck Scale for Suicidal Ideation scores.

Results: A total of 67 patients (mean [SD] age, 46.3 [13.6] years; 40 women [60.0%]) received a mean (SD) of 19.5 (5.1) MST treatments. The overall number of patients achieving remission was 32 (47.8%). Sixteen patients (55.2%) receiving low-frequency MST achieved remission, as well as 12 patients (54.5%) in the moderate-frequency group, and 4 patients (25.0%) in the high-frequency group. The linear mixed model revealed an association of time with Beck Scale for Suicidal Ideation scores (F8,293.95 = 5.73; P < .001).

Conclusions and relevance: These findings suggest that MST may be an effective treatment for suicidality, and sensitivity analysis shows this may be particularly so at low and moderate frequencies. Future studies should directly compare MST with electroconvulsive therapy for treating suicidality and should evaluate MST as a treatment for suicidality across mental disorders.

Trial registration: ClinicalTrials.gov Identifier: NCT01596608.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Blumberger reported receiving grants from Brain Canada, Canadian Institutes of Health Research (CIHR), National Institutes of Health (NIH), and the Temerty Family Foundation through the Centre for Addiction and Mental Health (CAMH) Foundation and the Campbell Family Research Institute; in-kind equipment support from MagVenture; research support and in-kind equipment support from Brainsway; and medication supplies for an investigator-initiated trial from Indivior outside the submitted work. Dr Voineskos reported receiving research training fellowship funding from the Ontario Mental Health Foundation, an American Psychiatric Association/Eli Lilly research fellowship, a CAMH postdoctoral fellowship, and support from the Innovation Fund of the Alternative Funding Plan for the Academic Health Sciences Centres of Ontario. Dr Downar reported being a medical advisor for TMS Neuro Solutions and NeuroStim Health; receiving grants from NIH, CIHR, Brain Canada, Ontario Brain Institute, Arrell Family Foundation, and Buchan Family Foundation; and receiving nonfinancial support from MagVenture outside the submitted work. Dr Mulsant reported receiving research support from Brain Canada, CIHR, the CAMH Foundation, the Patient-Centered Outcomes Research Institute, NIH, Capital Solution Design (software used in a study founded by CAMH Foundation), HAPPYneuron (software used in a study founded by Brain Canada), Eli Lilly (medications for a NIH-funded clinical trial), and Pfizer (medications for a NIH-funded clinical trial) outside the submitted work and reported owning stock in General Electric (<$5000). Dr Rajji reported receiving research support from Brain Canada, Brain and Behavior Research Foundation, BrightFocus Foundation, Canada Foundation for Innovation, Canada Research Chair, CIHR, Centre for Aging and Brain Health Innovation, NIH, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research and Innovation, and the Weston Brain Institute; in-kind equipment support for an investigator-initiated study from Magstim; and in-kind research accounts from Scientific Brain Training Pro. Dr Fitzgerald reported receiving a Practitioner Fellowship grant from National Health and Medical Research Council (1078567); receiving equipment for research from MagVenture, Medtronic, Neurosoft, and Brainsway; serving on scientific advisory boards for Bionomics and LivaNova; and acting as a founder for TMS Australia. Dr Daskalakis reported receiving research grants and in-kind equipment support for an investigator-initiated study through Brainsway and MagVenture and receiving support from the Ontario Mental Health Foundation, CIHR, the National Institutes of Mental Health, and the Temerty Family and Grant Family through the CAMH Foundation and the Campbell Institute. No other disclosures were reported.

The pdf is here.

This is a secondary analysis of data from a previously completed MST study. The results are encouraging, showing a strong effect of MST in reduction of suicidality. That the correlation with relief of depressive symptoms is not as strong as expected, leads the authors to speculate about different brain mechanisms underlying the two symptom sets.

Since MST is a form of ECT, these results are totally expected. If MST is eventually proven to be as effective as traditional ECT, if it has an improved tolerability profile, and if it is approved for clinical use (it remains experimental), the field will have another choice in convulsive therapies. These are a lot of "ifs" to get through-MST is unlikely to become a viable treatment any time soon. In many ways, pursuing MST is a distraction that takes away from efforts to make standard ECT more available to severely ill patients who need it.


Comments

Popular posts from this blog

ECT plus Antidepressants: a Review

Clinical Phenotype of Behavioral-Variant Frontotemporal Dementia Reversed by ECT: A Case Report

Early Use of the Name "ECT"- Sacklers in 1949